

Proton Physics Research and Implementation Group Workshop November 2023

Model for out-of-field doses in proton beam therapy for paediatric abdominal neuroblastoma

Daniela Botnariuc^{1,2}, Reem Ahmad¹, Pei Lim³, Ana Lourenço^{2,1}, Mohammad Hussein^{2,1} and Catarina Veiga¹

¹University College London, London, United Kingdom.

²National Physical Laboratory, Teddington, United Kingdom.

³University College London Hospitals NHS Foundation Trust, London, United Kingdom.

Introduction

- Each year, more than 300 000 children are diagnosed with cancer around the world
- More than 50% of patients receive radiotherapy (any form)

In the UK, 76% of paediatric patients survive for more than 10 years

What is the risk to develop radiotherapy treatment induced late effect?

- Second cancers:
 - ✤ 19% of all cancers are second cancers
 - main cause of mortality amongst the population of long-term survivors

(adapted from Newhauser et al, 2016, Frontiers in Oncology)

Aims and motivation

- Patient dose distribution maps recorded within the clinics present uncertainties:
 - out-of-field dose
 - no anatomical information
- Full-body dosimetry is required for epidemiological studies of radiotherapy-induced second cancers

The aims of this work were:

- 1. Develop a parametrised Monte Carlo (MC) beam model of the proton beam scanning system at UCLH
- 2. Calculate out-of-field neutron equivalent doses using the clinical model for a cohort of abdominal neuroblastoma patients
- 3. Compare the MC neutron dose to analytical neutron dose models in the literature

Beam model: in-field dose validation

- GATE Monte Carlo code
- The beam energy and optical properties of the source are tuned to match the beam commissioning data, through an iterative process

Beam model: out-of-field neutron dose validation

- Neutron ambient dose using the WENDI 2 detector
- $5 \times 5 \times 5$ cm³ field (energies 150 MeV 90 MeV)
- 10 distances, d

- Dose decreased with increasing distance from the field
- Absolute differences were within $50 \ \mu Sv$
- Percentage differences within 60% for the larger distances

Anatomy of the patient: Hybrid Phantom (HP)

- 5 neuroblastoma cases: CT image contains thorax and abdomen
- Extend the CT images of the patients to full body phantoms using XCAT computational models hybrid phantom
 - Find the best matching XCAT model for each patient
 - Use deformable image registration to create the hybrid phantoms
 - Organ contours: contained within the CT image + contained within the XCAT model + merged organ contours

HP: neutron dose as a function of distance

/gate/physics/addPhysicsList QGSP_BIC_HP_EMZ

/gate/actor/np/addFilter particleFilter
/gate/actor/np/particleFilter/addParentParticle neutron

Neutron radiation factor: 10

• Cases 3, 4 and 5: younger patients, smaller fields, lower energies

Analytical models of neutron dose

	Model setup	Phantom	Beam type	Gantry angle	Energy	w _n
Schneider et al.	Measurements Bonner Sphere and Etch detectors	Water phantom	Pencil Beam	270°	E = 177	7
Hecksel et al.	Measurements with NRD (Thermo Fisher) Prostate field	Anthropomorphic Phantom Patient TM	1 field	0°	E<208	-
Gallagher et al. – High Energy	Monte Carlo Brain treatment	Real patient (9-year-old female)	1 field	180°	E > 160	7.9
Gallagher et al. – Low Energy	Monte Carlo Brain treatment	Real patient (9-year-old female	2 fields	97° and 263°	E ≤ 160	7.9

- All models except Hecksel et al. showed similar trends with distance
- GATE doses for cases 1 and 2 were higher across all distances
 - Higher treatment energies and larger field sizes used for larger patients
- The Schneider et al. model presented maximum differences of a factor of 5 against GATE
- The Gallagher et al. model underestimated the dose by a factor of 100 for distances higher than 50 cm in comparison to GATE

Analytical models of neutron dose

- MC and Schneider et al. models had the highest doses for all organs
- Gallagher et al. presented the lowest doses for organs further away from the PTV
- The Hecksel el al. model showed similar dose values for all organs

Conclusions and future work

- We developed a MC-based framework to simulate full-body neutron dose in proton beams using our clinical beam model
- The MC model appears consistent with literature models despite different beam configurations used
- Analytical models may be suitable for preliminary second cancers risk estimation

Explore further:

- Understand the impact that the differences in neutron dose (MC vs. analytical models) have on second cancer risk estimation
- Further validate the MC neutron dose against experiments:
 - Longitudinal beam direction
 - Field size impact
 - Range shifter impact

<u>A lot of variability in the literature upon</u> <u>reporting neutron doses:</u>

- Physical dose
- RBE dose
- Equivalent dose (w_R)
- Normalised by prescribed physical or RBE dose
- Ambient dose equivalent (WENDI detector)

QUESTIONS?

Royal Academy

University College London Hospitals NHS Foundation Trust

SFRH/BD/145287/2019